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1. INTRODUCTION

.. . .~

The present report contains technical matter related to

the research performed at the Department of Physics of the

University of Modena for the Contract number .. •

DAJD45/83/C/0039 "Monte Carlo analysis of quantum transport

and fluctuations in semiconductors". The subject is treated

at three different levels.

a) Part of the research has reached definite conclusions;

in this case the material is well-organized and new results

are presented. This the case of the work performed on

fluctuations and on the effect of electron-electron (e-e)

interaction on energy relaxation (Chapter 4).

b) Part of the research is still under development and the

related material is still in the form of models and

proposals. This is the case of the research devoted to the ,- '

attempt to extend the Monte Carlo method to the solution of

quantum transport problems (Chapter 3).

c) Part of the material contains a review of known results NNW

already present in the literature. We felt useful to perform .'

this investigation and to present it in a unified way in

order to make clear the scenario in which our research is.5,2.. .
5. o°
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placed and the technical knowledge necessary for future

developments (Chapter 2).

In particular this report is organized as follows. The JN

formal quantum transport theory is reviewed in Chapter 2.

Different approaches to quantum transport such as the Master

Equation, the Generalized Langevin Equation, the Green

function method and the Wigner function method are described

and compared in their merits and shortcomings.

Chapter 3 contains the description of the attempts made

to generalize Monte Carlo methods to quantum transport

within the Liouville formulation. A method is propcsed to

solve integro-differential equations of the type obtained in -"

transport theories. The application of the method to the - :

actual equations governing the motion of electrons in the

presence of external and phonon fields is still under

development (Section 3.4).

The research performed on fluctuations of carrier

velocities and energies is described in Chapter 4. In

particular Sect. 4.1 deals with the autocorrelation of

velocity fluctuations, noise and diffusion in steady-state

conditions, while Sect. 4.2 describes the same quantities in

the transient regime. The effect of carrier-carrier

. w
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2. FORMAL THEORY OF QUANTUM TRANSPORT

2.1 Introductory Remarks

In the domain of ultrasmall structures (submicrometer)

and ultrafast times (subpicosecond) simple arguments based

on the uncertainty principle show that hot-electron -

transport in semiconductors needs a more exact approach than

that offered by the semiclassical Boltzmann equation. Table

2.1 reports the various levels of description of

nonequilibrium statistical mechanics. Starting from the

microscopic level, identified by the Liouville von Neumann

equation for the density matrix of the whole system

(electrons plus scattering centers), the kinetic level "-"\. --

describing the time evolution of the electron system can be

achieved. Then, by introducing several approximations, the

semiclassical Boltzmann equation can be, for example,

obtained.

Theoretical efforts towards more exact quantum approaches

have indeed predicted new phenomena /2.1/. Among these, the

intra-collisional field effect (ICFE) and the collisional

broadening (see Table 2.2) have attracted most of the

researchers' attention.

• *0•. .
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The former accounts for the fact that the scattering

occurs between electron states in the presence of an ,.. .

electric field. The latter is correlated with the finite '-

lifetime of the electron states as a result of collisions.

The main consequence of both effects is in the expectation -

of a smoothing in the sharp peaks of the scattering rates

occurring at threshold energies, as depicted in Table 2.2.

An illustrative description of the above effects, as -•

compared with the semiclassical Boltzmann picture, is

offered in Figs. (2.1-3).

Within the semiclassical Boltzmann picture (see Fig.

(2.1)), an electron performs a classical trajectory in real

space between successive collisions, which are treated as

point-like events in space and time. Transitions between

initial k and final k' wavevectors are also point like, and

the well defined correspondence between k and E(I) enables

a straightforward calculation of the energy involved. As a

result of this picture, the transition rate P(k,k') is

proportional to an energy conserving delta function.

In presence of ICFE the concept of "duration of a

collision" /2.2/ can be usefully introduced (see Fig. 2.2). "

Accordingly, a collision sphere in real space, with radius r -.
"i-? :-:"-C
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- (q being the transferred wavevector k k and P

the duration of the collision) can be defined /2.3/. In

this way, the carrier can gain or loose energy from the

field during the collision. Thus, owing to the

interference between the field and the scattering mechanisms
-. ,-, ' - '

and the possible gain of energy during the collision, a

scattering event can occurr which in the point-like

collision model was forbidden by the energy conservation. " '

As a result of this picture, the original energy conserving

delta function is transformed in a more complicate

expression (see Fig. 2.2), which can be analyzed in terms of

Fresnel integrals /2.3/. .. .

Collisional broadening is linked to the manybody nature

of the phenomena. The quasi-particle approximation must be
-I.''

released, and a complex self-energy 7___,)has to be

introduced (see Fig. 2.3). As well known /2.4/, the real

part of ! renormalizes the energy of the electron state,

while the immaginary part, through the optical theorem,-

gives the scattering rate. Energy and wavevector are now

two independent variables and a spectral density, S(k,E 1,

giving the probability of finding the electron with (k,C).

must be introduced. As a result of this picture, the

.5.
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original energy conserving delta function is substituted by

Lorentzian structures.

Different lines of approach can be pursued to establish

quantum kinetic equations able to describe the above

phenomena /2.5/. The aim of this chapter is to present the

main results which, to the authors opinion, have recently .

appeared in the literature in an attempt to evidence merits

and shortcomings of different formal theories. Our hope is

to obtain indications on approaches which are most

appropriate for numerical solutions, having in mind the

possibility of extending to a quantum mechanical framework
*i. . a

the traditional Monte Carlo technique /2.6/.

The chapter is organized as follows. Section 2.2 will

specify the physical model. Sections 2.3 to 2.6 will survey

the four main lines of development of the formal theory.

Applications and results will be reported in Section 2.7.

""s

"a.



2.2 The Model "

We concentrate on a simple case, yet without any loss of

generality, which corresponds to an ensemble of independent

electrons. These electrons are under the influence of an

applied electric field E which, if not otherwise stated, is

taken as homogeneous in space and independent of time, and --..'.

they interact with a phonon bath. Thus the total

Hamiltonian of the system is partioned as;

H H,, F H, H (2.1)

where 11 refers to electrons HF to the electric field, [If

to the phonons and 11 to the electron-phonon interaction. -, _

As the solution of a transport problem relyes on the -'

calculation of average values of the observables of interest .

(e.g. density current, concentration, energy, etc.) a

prescription for such a calculation is needed. To this end

different approaches can be used and, in the following, the

leading ones will be surveyed. ...

%

4. .. .....

" u ..> ..
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2.3 The Generalized Master Equation

• 2.3.1 The Generalized Master Equation

Within a Schroedinger picture, the density matrix (t)

of the physical system of interest is introduced. The

average value at time t of an observable 0, which does not -.

depend explicitely on time, is given by:

Ttt (h) (2.2)

The density matrix obeys the Liouville von Neumann equation: %'-"

L(2.3)

L = [ (square brackets denote commutator) being the

Liouvillian superoperator associated with 11.

Following Nakaijma and Zwanzig /2.7/, irrelevant

information about the electron subsystem can be eliminated

through time independent projection operators. In this way, .
* .. -%'

in place of Eq.(2.3), one can write a kinetic equation for

the relevant part of the density matrix (generalized master

9.I I
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equation), which can be analyzed perturbatively in terms of

the applied field and of the electron phonon interaction.
4' 44 :

Using this procedure Pottier and Calecki /2.8-10/ have * ,'

introduced projection operators that allow a factorization

of the density matrix for the coupled electron phonon system

and they have obtained an interesting quantum kinetic

equation. To restore the traslational invariance of the

electron Hamiltonian in presence of a uniform electric

field, they used a vector potential gauge;

44Y

I, "I'I, "°"

A"t) he  v p tental (2.oar F-r--rm're

where m is the electron mass, p the momentum operator and i-t"-ce w a

A(t) the vector potential operator. Furthermore,

statistical electron operators are introduced which at t=O 0-

are given by:

..:.,:-::-:.

(2.5

4.W

4...-.:-,::

-: .: , .-, -

4.I llll

-4.. %



01

wher tie tO coresond tothe within on f te feld

and ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ' th pttetr'heaclrae lnewvs I tt

0 Y s eolued b th toal amilonin ten, o te lwes

where tie pr orrespondes toK theswitchngerongo the ierl

andiio temheegienby

4 M

rt-

CL g

9ca

RS -

+1~~~~~~~~~~- (-)crepodn oponneiso*(bopin



12

processes. F(K;t) represents a stochastic (Langevin) force

which is given by:

tt

(2.6c) -

In contrast with the collision term, F(K;t) does not

involve the projections on the Kx states, but only

off-diagonal electron operators. In Eqs.(2.6) C(-q)

characterizes the nature and strength of the electron phonon

couping exp(i.) is the angular frequency of

the phonon with wavevector q, N Iis the equilibrium phonon

population, E: (k) the eigenvalues of the zero field

Hamiltonian, and-iK the canonical momentum given by;

'fK -h'k +eA(t) (2.6d)

The electron distribution function f(K,t) in >rstates is
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conveniently expressed in the Heisenberg picture and results

to be: :.. .- ,

,[(0) Y(T< (2.7)

where the trace operator acts in the whole electron phonon

space.

By assuming that the initial density matrix P(O) is

factorized in the phonon and electron parts as;

= ~ ~(o)(2.7a)

A one gets:

T .(2.7b)-

So the Langevin force does not contribute to the evolution

equation of the electron distribution function. Therefore,

f( K;t) obeys the high field retarded transport equation:

CU5'..." S ..

'.... .,:-

5" '. ° ,.

%" 5" %" *
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I(J,I~c;tLif, (2. 7c)

As merits of Eqs.(2.6): (i) a Boltzmann Langevin equation

able to describe average quantities as well as fluctuations

around average is obtained from first principles. (ii) An '".•

explicit microscopic expression of the random Langevin force

is provided. (iii) By including the external field in the

basis state, the intracollisional field effect is

automatically accounted for. (iv) The choice of the vector

potential gauge enables to avoid the use of the Airy

functions. (v) A periodic crystal potential (Bloch

electrons with interband scattering neglected) can be easily

introduced.

As shortcomings: (i) Since the lowest order in the

electron phonon interaction is considered, collisional

broadening is not accounted for. (ii) The stationary state

does not correspond to the condition that one would expect

(K, t ) / 2 t 0.

V..

I -. °' -

4 '-' ° ,
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2.3.2 Comparison Between The Generalized Master Equation And

The Boltzmann Equation

To gain some physical insight, we shall compare Eq.(2.7c)

with the familiar Boltzmann equation:

(P (2.7d)

To recover Eq.(2.7d) from Eq.(2.7c) the canonical K-vector

has to be substituted by its expression as a function of the

crystal wavevector (see Eq.(2.6d)). In doing so it is

easily verified:

JU ;') e O ) (2.7e)

Then, by taking the ansatz of completed collisions

in the r.h.s. of Eq.(2.7c), and neglecting the effect of

the field during the collision, the collision term

P(K,K' ;t,t' ) recovers the usual markovian form in the

carrier wavevector representation P(k,k').

•77-.' .[
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2.4 The Generalized Langevin Equation

2.4.1 The Generalized Langevin Equation

Within the Heisenberg picture, the average value of

Eq.(2.2) writes:

< o>t T[, (o) 0 ()] (2.8)

where the time evolution of the operator O (t) (here the

subscript H indicates the Heisenberg picture) is given by

the Heisenberg equation of motion:

. . .°.6 H 014LO~k (2.9)

Following the original idea of Mori /2.11/, Zubarev /2.12/

and Grabert /2.13/ a decomposition procedure which makes

use of time-dependent projection operators can be

introduced. In this way a generalized Langevin equation for --

the thermodinamically relevant variables (macrovariables) of

the problem can be written in place of Eq.(2.7), which can

be analyzed perturbatively. Following this procedure, Ferry

; -A".."-

. %. .A
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and coworkers /2.11-13/ have considered the set of

nacrovariables: C.

fi~3 -~ 'J, i, Hp H He. p(.0

jwhere P is the total momentum of the electronic system, Ne

the number operator of electrons and the other

macrovariables are the same as in Eq.(2.1). Then, the

equation of motion for the macrovariables is found to be:

+ JO~'ar(~' L 7(S')L f-IT C9J G (S',t) FLYO) +~

+f-1(OJ 6 (,LH) P(O) - (i'.s'BiLs') (~i

Here 1lf(t) is a time dependent projection operator which is

defined in terms of the chosen macrovariables and of their
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average values, and the operator G(s,t) is a two time Green

function given by:

t x. d E.-f-(U)I (2.12)

T being the Dyson time ordering operator from left to

right.

The physical meaning of the terms on the r.h.s. of

Eq.(2.11) can be identified in the following way. The first

term gives the collisionless motion. The second term can be

divided into two parts, the former characterizing the

collisions and the latter leading to a fluctuating force

induced by the electron-phonon interaction and the

nonequilibrium nature of the system. The third and fourth

terms are two additional fluctuating forces, the former

being Mori like in nature and the latter characterizing the

fluctuations induced by the rate of change of the

macrovariables during the transient regime. The average

motion of the macrovariables is determi ,ed by the equation: -

<PU) 1> = <+iLl)P( o)>

i"
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As merits of Eq.(2.12): (i) A generalized Langevin

equation valid at high electric fields is obtained from ._..

first principles. (ii) Separate descriptions of the motion

in absence of collisions, with collisions, and with

fluctuations are evidenced. (iii) Fluctuations under

transient conditions are accounted for. (iv) Generalized

balance equations can be obtained.

As shortcomings: (i) The choice of the pertinent

macrovariables is critical but no fixed rules govern this --
-~ %

choice, rather one must be led in doing that by physical

intuition.

LA--

r :::..::.:.



20 :.~

2.4.2 Comparison Between The Generalized Langevin Equation

And The Classical Langevin Equation

To get some physical insight, a comparison of Eq.(2.lI)

with the classical Langevin equation and with the equation

derived from first principles by Mori /2.11/, under linear

response conditions, is here reported.

The Langevin equation, phenomenologically derived in

presence of an electric field, takes the form;

( -eF - ,_ pU) +C) (2.13b)

where - is the classical momentum of the particle, a

relaxation time accounting for friction effects, and R(t)

the stochastic force associated with the rapid fluctuating

part of the carrier motion. A first principle justification

of Eq.(2.13b) under linear response conditions in the

external field was given by Mori /2.11/. By introducing a

time independent projection operator-T1 Mori's equation for

the quantum momentum P writes:

PU:)= ~et,(L)l P (0)

-.- .s..

, - -
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-... o+5 O'Y 2xpiL(-S)] iT~ Lerp['('(4-7Ls1(4-T0' Fo) +

ti" i)(2 1"

where the three terms on the r.h.s. of Eq.(2.13c) are the

quantum analogous of those in the r.h.s. of Eq.(2.13b). It

is worth mentioning that in the Mori equation the friction

term is described by a quite general retarded kernel. - -

Furthermore, first-principle justification of the stochastic

force, postulated by Langevin, is provided for the first

time.

Under far from equilibrium conditions, the first three S

terms on the r.h.s. of Eq.(2.ll) are the analogous of those

in the r.h.s. of Eq.(2.13.c). The nonlinear condition is

however responsible for the need of a time dependent

projection operator and for the fourth term in Eq.(2.11).

This term is related to the transient which goes from the

switching on of the field, assumed to be step-like, to the

stationary far-from-equilibrium condition.
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2.5 The Green Function Method

2.5.1 The Green Function Method

Within a second quantized Heisenberg picture, with creation -71

".' t) and annihilation 4(r,t) field operators, the

average value of Eq.(2.2) writes:

TM bv5 H.-,Ve)] fi(t)OL b)?
= " (2.14)

where the average is performed on the grand canonical

equilibrium ensemble (i.e. H = H - I 1/(KFT ), K%

being the Boltzmann constant and T the bath temperature, A

is the chemical potential). All the dependence of the

external field is esplicitated in the evolution operator:

L - V expF I cd-I cl; (dI ~ )t)H](2.15)-aI( J _ ... ......--

T + being the time order operator from right to left.

Following Kadanoff and Baym /2.17/, a set of real time Green

functions is introduced as:

.p0
'°° ." .° " %-: '

i. .' ".-v-.-',
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O, •.e
%.%•

.5..2 .16b)5

.1~(2.17)

5' -. %

•o to tretthexteral e e. 

the clcula,tio ) -- i uw t'eps Fis,)> (2 .16 ) in

ishre <ncate tt'rspctly. This leadsragte introduction.of fiel

" it is ' ' ,.

C, + L SL F EL(2.18b)
I, bOL ) -

Eq. (2.14) can be calculated in terms of G and G . In

.- particular for the density current i s ..-

5. '-1

'-:. . . .

i~~ i .  On this basis, W ilk ins a nd coworkers /2.18-20/ have .

• ~~developed a Generalized Kadanoff-Baym (GKB) formalism which .-...

''.o,,..allows to treat the external field exactly. Conceptually 'i[,

the calculations split into two steps. First, the motion in -

,i ~~absence of collisions, but in presence of an electric field.,.-.

..-... is treated exactly. This leads to the introduction of field '.:--".....,

.lg ~dependent Green functionsG, : ...

-"HF o o HF " "

=,o. +4 HF4..18)- %°%

i' "" J""." "- "

", *.5~....:

vs ,*

-U:.'::
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0"*,% o j..?.

where refers to retarded and advanced Green functions

for the free electrons. Second, the description of the

distribution of the particles in presence of collisions is

given in terms of the field dependent Green functions. These

functions satisfy the GKB basic equations: -

cHF IHF (2.18b)

:-. ~ ..- ...- %*

i(, ) , = LLu- 1 ,I
C74

+. - (2.18c)

To have a closed set of equations one needs to know the _

electron self energy L as a functional of the Green
.- . ." S.'"

function G. To complete the notation let us remind that the -e ,

following identities are valid for G (and s.1:

C" (2.19a)1

.S ' .-

0. . .
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6 ~a.'~'-~~ =0 -(2. 19b)

. .-

&(CC)J-

C-11 t , ) =(r- ' 4 ( ,L) t t) 2. 19c) .:..:.

0(t-t') is the unit step function and , } indicates the

anticommutator. Furthermore, as all G's are double time,

double space, and real time Green functions, Eqs.(2.18)

should be interpreted as matrix equations: integrals over ... : .

intermediate position and time variables are implied -.-

throughout. In Eqs.(2.18c) all external forces are denoted

by the operator Iyf , whereas all scattering processes

(impurities, phonons, etc..) are collected in the self

energy. Eq.(2.19c) is a generalized quantum kinetic

equation. The physical meaning of different terms is the

following. The left hand side gives the collisionless

evolution of the Green function. The right hand side

represents a generalized collision integral: the commutators

describe the kinetic effects of the interaction

(renormalization of the electron eigenvalues due to the

presence of field and interaction); the anticommutators

describe the dynamical effects of the interaction (i.e. how ..

1.4.V.-,.." ,
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the collisions transfer particles from one energy-wavevector

configuration to another). A consequence of the complete
,% . -' .,.

description of the interacting system is that the

quasi-particle aproximation (i.e. a one to one

correspondence between energy and wavevector) has to be

relaxed. Now energy and wavevector are two independent A

variables described by a spectral density function S(k,C)

which gives the probability that the electron has the

variables (k,,.

As merits of this method: (i) The standard diagrammatic

perturbation expansion for the interaction of the electrons

with the scattering centers can be applied. Thus, collision

broadening can be included from first principles. (ii) The

intracollisional field effect is accounted for. (iii) Once

G"- is determined, the most interesting average quantities

can be obtained straightforwardly.

As shortcomings: (i) To take advantage of the

perturbation expansion an immaginary time domain has to be

introduced. Therefore, an analytical continuation technique

is necessary to obtain physical results on the real time ** . -

domain.

• ' •_- V
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276 The R

2.6 The Wigner Representation

2.6.1 The Wigner Representation r_

The one-particle Wigner function f (p,?;t) /2.22-24/ is

defined as the Weyl transform of the density matrix 1i(t)

divided by h3 . In the case of a system in a pure state, f

has the well known form given by Wigner:

X1IFL (2.20) 4

where /(r,t) is the wavefunction in configuration space.

The average value of Eq.(2.2) becomes:

si-

where the function o(p,r) is given by the Weyl

correspondence rule:

-o . -
(2 -:.

I.. ,%a',
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Circumflex accents disinguish the operator from the

correspondent canonical variable.

The evolution equation of f V is found by performing the

Weyl transform of the Liouville von Neumann equation. A

kinetic equation which includes collisional broadening and

intracollisional field effects has been proposed in

Ref./2.25/. Going over a second quantized formalism in the .

Heisenberg picture, the Wigner function is found to emerge

from the Green function formalism. Indeed, by introducing

Wigner coordinates:

ILI
Y4i't % %A

_ (2.23)

2 -9

and defining Wigner transform:

°°°-.% -

~ (fPVwT) =t JdC_ KLL Y tL

2 .2 4 a
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. .. 2 .24b)
ar

it is:

I<
S2n 1 6) (2.25)

Thus the kinetic equation (2.18) is appropriate for

introducing all relevant quantum effects into f(R,P,T).

Following this procedure Barker and coworkers /2.26-28/ have

analyzed collisionless (ballistic) transport for particles

interacting with model potentials.

As merits of the Wigner representation: (i) One can take

advantage of the correspondence rule to introduce concepts,

like Wigner trajectories /2.29/, which visualize quantum

effects in a classical framework.

As shortcomings: (i) The interpretation of the Wigner

distribution should be made carefully as, by not being

necessarily positive definite, it has not a probability

meaning. In this respect a generalized Wigner distribution

f(R,P; ) ,T) = -i G (R,P; Wg ,T), which allows for an

autocorrelation function interpretation, should be more
.
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conveniently introduced /2.17,30,31/. In doing so, the
,-. d.. '

identity between the generalized Wigner function and the

Green function formalisms is clearly evidenced.

(ii) The stationary Wigner functions may not be obtained .

from the transport equation, unless possible initial

conditions are restricted /2.24,32/. Instead, they satisfy

an eigenvalue equation reviewed in Ref./2.33/.

* .. *0?%,

- •. j. -. -

I -i~i

,.*. °

?77!



2.6.2 The Wine Function ForThOn-iesoaPtnil

j Step

An interesting example of Wigner representation is the

one for the stationary solution of the one dimensional

potential step /2.29/;

L1v,
0 (2.25a)

The eigenfunctions of a particle of energy 0 <(E< V, subject

to the above potential step are:

_2A ex'p (io0) cos (kci2)- (-9 0

where

L +
FJ11W
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W-4 V, (2.25c)

and A is an arbitrary normalization constant.-

By assuming that the system is prepared in the state

* represented by Eq.(2.25b) at time t=O, the corresponding

Wigner distribution can be obtained from Eq.(2.20) applied

to the one dimensional case. The result is;

L(, ) 2r~l __ __ _ _+_

2P 2

+rr

and

~f~a~p~o) 2

- 9 P61 A k)Z Ai 2c

[(2 P )2_
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J° '

21<q)[r24( ~) 2 ] (f' P,

[r'4 Awl q -"

(2.25e)

Since the particle is in an energy eigenstate, Wigner

trajectories are given by equi-Wigner curves. Fig. 2.4

shows the results. The classical trajectories for the j
present case (see Fig.2.4(b)) consist simply of straight

horizontal lines. An interesting feature exhibited by

Wigner trajectories shown here (see Fig.2.4(c)) is that a

non negligible portion of the trajectories penetrate through

the potential step. In general, the larger the energy of

the space-phase point approaching the potential step, the

deeper i.S the penetration Very roughly, the average

penetration can be estimated by looking at the trajectories

and their relative weights given by f. This approach thus --

provides a pictorial view of quantum tunnelling. One,

however, should not attach a physical meaning to each single

trajectory because it is not observable. As can be seen

C



,... .. :;

from Fig.2.4(c) some trajectores are associated with

negative weights. This is due to the fact that the Wigner

distribution function is not positive definite. The Wigner

distribution function is essentially an auxiliary

mathematical function introduced for convenience of

discussion. For the sake of completeness, Figs.2.5-7 report

the full Wigner function in the classical phase space for

the different particle energies there indicated.

-. . -

.S... 2- i



35 *
.-.. ..-
a+ - . '

2.7 Applications

Real cases can be classified within two limiting regimes

of motion: the time reversible collisionless case and the

irreversible stationary case when a given particle undergoes

many completed collisions. The formal theories outlined in -

the previous section cannot be applied "sic et simpliciter"

to the latter case. Indeed to identify a given number of

completed collisions a coarse-graining of time is required.

This problem concerns the reduction of the original

non-Markovian generalized collision integral to a Markovian

form. This procedure, which is at the basis of

irreversibility, is however associated with a loss of

information which is hard bevaluate. in terms of physical

approximations. This is the actual bottleneck of quantum

transport theory.

1.7 Using the Green function method as a guide line, an LW

interesting attempt to account for quantum effects within a

standard Monte Carlo procedure has been proposed by Hess and

coworkers /2.34-36/. A self-energy model for an electron

nonpolar optical-phonon scattering mechanism is introduced
¢ [,,. ,. ..,

as: . -

-
- '. S .•

, -S %+
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5>4f Id)= n2 Ict'o (2.26)
'"'- '- €Wop,-2C-Wop)+L&

where g is the coupling constant given by liD5'(2\ tOp) (1i

being the Planck constant divided by 2iT , D is the optical

phonon deformation constant, the density of the material)

and f (C) the electron density of states.

Eq.(2.26) is solved numerically using a density of states

obtained from pseudopotential calculations. The optical

theorem allows to define the scattering rate for the

electron phonon interaction as:

't2~ ( ) - - ( )IT( m = (2.27)

which should, in principle, improve the Golden rule result.

Indeed, self-energy corrections are found to reduce the

scattering rate. Furthermore, the delta functions appearing

in the energy conservation terms of the Golden rule are

replaced by Lorentzian structures of the type;

P (2.28)

+ ,i -+.7,

where subscripts i and f indicate the initial and final
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states, and e I. are the quasi-particle energies shifted

by the real part of the self energy. Within a Monte Carlo

procedure, Eq.(2.27) can be used for the determination of -

the free flight (self-energy correction) and Eq.(2.28) for %

the determination of initial and final states (collisional

broadening). The latter step is a delicate one since it is

not clear how it could be included consistently into

numerical calculations. This point needs a more careful

analysis than that presently available.

Several authors have recently speculated about the field

dependence of the transition rates in high field quantum

transport. Within a Stark ladder representation Sawaki -"-'

/2.37/ has analyzed the effect of an electric field in terms

of the self energy due to higher order terms in the elecron

phonon interaction. Herbert and coworkers /2.38,39/ have
-.. ...:.:...

used a time dependent perturbation theory modeling the

scattering between Airy functions. Analogous calculations

have been performed by Ziep and Keiper /2.40/. Marsh and

Inkson /2.41/ have attempted to generalize the above results

by employing WKB wavefunctions in place of Airy functions.

Overall, no definite conclusions have been reached so far,

and different approaches are still a matter of discussion

12 .2
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2.8 Conclusions

4 Recent developments on quantum transport in the

hot-electron field has been surveyed. By comparing

different formal approaches, the Green function method

emerges as a more powerful technique since it can take

advantage of a diagrammatic perturbation expansion for the "

interaction of carriers with the scattering centers. The

comparison between theory and experiments /2.34, 35,

43-45/is still far from being satisfactory, in view of the

difficulties to estimate the reliability of the

approximations introduced and to find crucial experiments on

the subject.

i * r. -

*, o' ° A '-
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TABLE CAPTIONS%

Table 2.1: Theoretical levels of description in

nonequilibrium statistical mechanics.

Table 2.2; The most interesting phenomena predicted by

- quantum transport theory.
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LIOUVILLE VON NEUMANN EQUATION

KINETIC QUANTUM TRANSPORT

i) Generalized Master Equation

ii) Generalized Langevin Equation

iii) Green Function Method

iv) Wigner Distribution

SEMICLASSICAL BOLTZMANN EQUATION

i) Band structure: the energy is given by a well

definite function of k "[ -v

ii) Scattering Probability: within the golden rule

iii) Classical concept of the single particle

distribution function as the probability of

finding the particle in dk about k and dr
.,-w

about r.

!.13 2.1t • ;.>..:
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NEW PHENOMENA 41

INTRA COLLISIONAL FIELD EFFECT -.-

THE SCATTERING EVENT DURING A FINITE TIME, AND TIE APPLIED

ELECTRIC FIELD INTERFERES WITH TIE SCATTERING HAMILTONIAN

COLLI SIONAL BROADENING

OWING TO SCATTERING PROCESSES THE ELECTRON STATE HAS A

FINITE LIFETIME. THEREFORE TIE ENERGY WAVEVECTOR RELATIONSHIP S.

IS DESCRIBED BY A SPECTRAL DENSITY S(k, E ). S(k, e ) IS TIE

PROBABILITY OF FINDING THE ELECTRON WITH GIVEN (k, C). -

CONSEQUENCE

SHARP PEAKS OCCURRING AT THRESHOLD ENERGIES ARE SMOOTHED

- - - WITHOU1T ICFE

WITH ICFE

I-

ENERGY

TAB. 2.2 

CA. !:!:! h a
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FIGURE CAPTIONS *- 'A.%

Fig. 2.1: Schematic representation of the semiclassical

Boltzmann picture. -.

Fig. 2.2: Schematic representation of the Intra-Collision

Field Effect."-5..

Fig. 2.3: Schematic representation of Collision Broadening.

Fig. 2.4: Representation of the Wigner trajectories for the

one-dimension potential step model (arbitrary units are

used).

(a) Profile of the potential.

(b) Classical trajectory for the case of a particle energy G

lower than the potential energy of the barrier V0.

(c) Wigner trajectories for the case 6=0.5, V =1.

Fig. 2.5: Plot of the Wigner function for the one dimension

potential step model in phase-space. 0.I; VC 1 in -

arbitrary units.

--
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Fig. 2.6: The same as in Fig. 2.5 for E. = 0.5; V = 1.

Fig. 2.7; The same as in Fig. 2.5 for EL 0.99; V0  1..
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SEMICLASSICAL BOLTZMANN PICTURE

CLASS ICAL

TRAJECTORIES

/ POINT LIKE

Y E COLLISIONS A

ENERGY

WAVE VE CTOR

FIG. 2.1
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ItNTRA COLLISIONAL FIELD EFFECT
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ENERGY

ENERGY CAN
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LOST FFOM THE
FIELD DURING
THE COLLISION

A E (0) ~
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3. MONTE CARLO SOLUTIONS OF TRANSPORT-LIKE EQUATIONS

3.1 Assumptions and limits of the traditional Monte Carlo

procedure

The Monte Carlo method, as applied to charge transport in

semiconductors, consists of a simulation of the motion of

one or more electrons inside a crystal, subject to the

action of external forces due to applied electric and

magnetic fields and of given scattering mechanisms. The

duration of the carrier free flight (i.e., the time between

two successive collisions) and the scattering events -

involved in the simulation are selected stochastically in

accordance with some given probabilities describing the.

microscopic processes. .

As a consequence, any Monte Carlo method relies on the

generation of a sequence of random numbers with given

probability distribution.

When the purpose of the analysis is the investigation of a

steady-state homogeneous phenomenon, it is sufficient in

general to simulate the motion of one single electron: from

ergodicity we may assume that a sufficiently long path of

this sample electron will give information on the behavior

. ° .

-w.,,
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of the entire electron gas. When, on the contrary, the

transport process under investigation is not homogeneous or .- .

is not stationary, then it is necessary to simulate a large

number of electrons (Ensemble Monte Carlo) and follow them

in their dynamic histories in order to obtain the desired

information on the process of interest.

The electron distribution function can be obtained from a

Monte Carlo simulation by extracting the information on how

much time the simulated particle spends in each cell of a '

mesh of the phase-space or, in an Ensemble Monte Carlo, by

counting the number of particles in each cell of the mesh.

It is well known that the distribution function obtained "

from a Monte Carlo simulation is a solution of the Boltzmann

equation describing the same physical situation. However, ....

the power of the method goes beyond this characteristics. In

fact, since the scattering events are explicitely simulated

according to the scattering cross sections of the model,

fluctuations actually arise in the simulated process and

quantities like autocorrelation functions and noise can be

studied/3.1/.

Such a situation is so favorable for the analysis of

transport problems that, in the last two decades, most of

o- %' -
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the physical systems of interest have been analysed and

understood within the limits of validity of the

semiclassical theory of transport. - L

Therefore, a need is now felt to overcome these limits and

try to extend the method of Monte Carlo simulation to

include quantum effects not accounted for in the traditional

approach.

Such a need is further justified, on practical grounds, by

the present state of VLSI technology which now allows the

fabrication of devices so small that quantum effects may

become appreciable.

Quantum effects are a consequence of small dimensions not

only because of the well known size effects, but also ......

because the applied voltages (which cannot be decreased

below certain limits) at such distances imply very high

fields, at which quantum phenomena may become important

In the traditional semiclassical approach, collisions are

treated as pointlike events in both space and time. In

fact, a fully quantum mechanical treatment should account

for the interference between applied and scattering fields

(intracollisional field effects), the finite lifetime of the

electron states (collisional broadening), and the
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possibility of multiple collisions.

Within this picture, energy conservation is not a feature

of each of each scattering event, and the simple one to one

correspondence between energy and wavevector will be

substituted by a probability distribution Pk E

IFurthermore, at any new collision the assumption is made of

perfect energy conservation of the previous collision, which

is not exact when two scattering events happen quite near to

each other. Collision broadening is thus neglected.

Another feature of the traditional approach which we do not--

I feel happy about is the use of first order perturbation

theoy, hatis the use of the Fermi golden rule, for the

transition probabilities.

S The situation then calls for a search of new techniques

which can allow us to treat transport problems with a fully

i ~ ~quantum approach, free from the above limitations. ~'

j r "4-4 . d

,J..,% , a

F%'
LPo t
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3 3.2 Monte Carlo solution of a set of algebric equations

Let us consider a system of n linear algebric equations of

the type

x. =f. +A. x .,j~..l (3.1)

where x. are the unknowns, f. a known set of numbers and A.

a matrix of known coefficients, and summation over repeated

indices is implied.

If Eq.(3.1) is iteratively substituted into itself, we

obtain the following expansion in series of A:

x. f. + A- (f.x+Ax (3.2)

f, + Af.+AA f + + +A .A, -A f

if

A-.ma 1 (3.3)max:EJIA 4 <'
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the series in Eq.(3.2) converges/3.2/.

It may be interesting to put Eq.(3.2) in the form . .

(I-A)x f (3.4)

or

x = (I-A)- f (3.5)

In this way we recognize the series expansion in Eq.(3.2) as

the harmonic series expansion of the resolvant operator in

Eq.(3.5):

"*.4. .'%*.

(I-A) = I+A+A+... (3.6)

A Monte Carlo procedure has been developed by Von Neumann -

and Uiam to solve the system in Eq.(3.1), which proceeds as .

follows/3.2/.

Let us consider a set of n "states" or "boxes" labelled 1,

2, ...n, and let a "simulative particle" be positioned at

the beginning of the simulation in box i. Let then simulate

a terminating random walk with fixed but arbitrary

.-,,---, ",

- +-' -a+

-II I I *III
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transition probabilities

), i,jlj... n (3.7)*d

from state i to state j p must satisfy the following

conditions:

p > 0(>0 if A,-j 1)

For each state i the random walk has a terminating.

probability given by

p.. (3.9)

Any random walk 'fmay be represented by the set of the

successive visited states

= (i 0 ~ ,**,1.~Ii~)(3.10)('0 "4~
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For a given random walk represented by in Eq.(3.lO) let

us compute the quantity

).TV( (3.11)

where

A;v 1p ____ (3.12)

or

V( '~)=1 if V io)(3.13)

The expression =(i, ) in the last equation means that the

random walk has terminated before any transition took place. .

The expectation value of X( - ) for random walks starting

from i. is given by

X(f/i. ~ /" X)"(.4

where P( V'/io) is the probability of having the random walk

given i~, as starting state. Thus
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where we have taken into account Eq.(3.2).

Therefore the following Monte Carlo procedure can be applied

in order to solve the system in Eq.(3.1). a given uinknown x.

is chosen and many random walks are performed starting from

4'.-..

.-. ....
• ."k");..-
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the state io  , according to the transition and terminating

probabilities given in Eqs.(3.7-9). For each random walk,

the quantity X( T )in Eq.(3.11) is evaluated. Its average

value over the random walks is a correct estimator for x0 . -

Variations of this method can be found in the -:

literature/3.2/.

Fr

4-.

::-.:: :;
.im.'-,°

• .U .-.

5.',,' ,' .



.9

64

.3.3 Generalization of the procedure to an N.-

-.

*:." integro-differential equation -

Let us consider an integro-differential equation of the type

9foa_ _H (,,e,0[(- E))d+ (3.16)

QX.

where v is a constant and 1J(x,x',t) is a known function;

f(xt) is the unknown function defined in the interval
',- -"

a~x~b.

The interest in considering this equation is based on the

fact that transport equations have often this form. In -

particular the Boltzman Equation can be reduced to the form

of Eq.(3.16) with 11 closely related to the scattering

probabilities and v proportional to the applied electric

field. I-

In what follows we shall describe a numerical procedure

which generalizes the method shown in the previous section

to find a steady state solution, if it exists, of an ., *

equation of the type of Eq.(3.16).

From Eq.(3.16) we may obtain

%"% '

V:--:;

I " I
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or

(x,~4&)(3.18)

where x=v~t

Let us consider a mesh of the interval (a,b) and let f(t

be the value of f(x,t) in a representative value of x in the

i-th interval. If x is in cell i, let x-dx be in cell i.

Then our equation reduces to

f.t+Yt =f,(t)+A- f. (t) (3.19)



66

where

A- H(x.,X' t)btdx' (3.20)

cellj

If Eq.(3.16) has an asymptotic solution independent of t,

for large enough t Eq.(3.19) reduces to

f.- =f. +A - f - (3.21)

This equation is not exactly of the type desired (Eq.(3.21))

since f.v is not known. However an iterative procedure can :J..

be attempted which starts with a trial function fI) ;if f(O

is inserted in the first term of the r.h.s. of Eq.(3.21),

then with the Monte Carlo procedure indicated above a

solution f can be found, solution of the equation

f fil + A' (3.22)

The process can be repeated with f as known term, to find

the next iteration f ,and so on until convergence is

P,.J
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reached.

We have tested the above procedure for the case of

II(x,x',t) (3.23)

where x is variable in the whole real axis. In this case

the equation has the solution, nomalized to unity,

f(x,t) =3.24)

with asymptotic solution given by

2..

f(x,t) = 4 (3.25)

The Monte Carlo procedure described above has been applied

and the results are reported in Fig.3.1. Here the initial

trial functionand the function obtained after a large number

of random walks are shown together with the exact solution

of the equation.

- . . .

• 
~. .',~°,

"-"% 
% -

° • 
°~- 1 - -i° " -°



3.4 Application to a quantum transport equation

Let us consider an ensemble of N electrons in a crystal in

the presence of a homogeneous static electric field E and a

perturbation potential given by a superposition of plane

waves with different wave vectors and equal frequency.

V~ ) A (3.26).:-:,, '-"4i-.

This potential may be considered a semiclassical

representation of an optical phonon field.

In what follows we shall adopt a density matrix formalism.

The one-electron wave functions can be expanded in a series

of Bloch states as

. . "-?- . ,)

(fit) (3.27 ) 327)
J . ~., °.-. "

where i indicates the i-th electron. * ": .

The density matrix is defined as

4p

o . - 4- /

',.'- ~.p ,,:. .,
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J.

.I~j~ 0 1 )C (J 1 . (3.28)

can now be considered as an operator whose matrix

elements in the base of the Bloch states are given by

Eq.(3.28). The equation of motion for is .A

L ~(3.29) 1r

In the base of Bloch states this equation becomes

H (L.~u(3.30)

If e ncude th tme dependence in the basis set of

functions, we may write, in this new interaction

representation
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.-- 

a) iA (3.31) *.-N

with

The density matrix is now written as

NA..

By substituting as given by this expression in Eq.(3.30)

we obtain

(t.
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- .L , - bC A , ( 3 .3 4 )

where

1Lr

Ide

Now Jt(k,k',t) are the matrix elements of H1 between the time

dependent Bloch states. For simplicity these will be

approximated, in what follows, by plane waves, thus

neglecting the overlap integrals in the matrix elements.

By inserting Eq.(3.35) into Eq.(3.34), we have

,. * . . _

.
" 1 %

1W...k1

ir % '%L
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It
or

Tetotal hamiltonian is given by the sum of three terms:

Th=unperturbed hamiltonian for an electron in the perfect

crystal;

qt hamiltonian due to the presence of the external field,

here assumed uniform and constant;

=hamiltonian due to the interaction with the oscillating

(phonon) field given by Eq.(3.26).

For the matrix elements we have

IV
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%0 Q"' (3.38) ,.:

(w,- we,) L:
-

(3.39)

( i ( - A ) ------------

W-k,- f,-L ' ) = W:)k.-
A t - (3.40)

In order to consider V as representative of the phonon field - ...

• o " .. ° ".

V'-' '%.
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we choose

j Or
( 3.41 ) ,.,>.+-_

. 1 " ft ftff... -

where is the density of the crystal, V its volume, E the

deformation potential coupling constant, and N the phonon

occupation number.

Furthermore, in the second term, corresponding to the 2
emission of phonons N_ must be substituted by N + 1, in

order to take into account spontaneous emission. Therefore --

-4t:. ( --

(3.42)

.. By substituting the matrix elements calculated above into

Eq.(3.37) for the dynamics of the density matrics, we obtain

-+"~~0 (LLIIII
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k"4"-

clau(G)3(3.43)

where k =eE/4( andL L

This equation can be transformed into

d~i We~ki

- 1F7... ~(k"L)(3.44)

which can be reduced to the same form of Eq.(3.1).
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The application of the numerical techniques described__

earlier to Eq.(3.44) is currently under development.

* Ar-

i
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4.FLUCTUATIONS OF CARRIER VELOCITY AND ENERGY IN STATIONARY

AND TRANSIENT REGIMES

In recent times the analysis of velocity fluctuations of

charge carriers in semiconductors in presence of high

, external electric fields has received renewed

attention/4.1-4.12/. Modern microelectronics technology, in - .

fact, has reached the submicron scale of miniaturization, at

which a deeper insight into the physics of transport *

phenomena is required/4.13/,and fluctuations come to play an

increasing role in the design and characterization of a

device. Furthermore, a theoretical analysis of fluctuations

at sufficiently high frequencies can yield significant

information on the physical properties of the scattering

sources present in the material under consideration and,

more generally, on the microscopic interpretation of its

transport properties.

Several papers have appeared on this subject in recent

years. However no rigorous account has yet been given of

the different sources for such fluctuations /4.14/ and very

few results have been reported on transient

fluctuations/4 .15/.

We have performed a unified analysis of diffusion and

noise problems obtained by means of the velocity

autocorrelation function. This method can be used to

describe both steady state (Sect.4.1) and transient

-4 ... . -j

- ..- ~
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(Sect.4.2) phenomena, and also to analyze the different

contributions to the diffusivity due to the different

physical sources of fluctuations which arise in the presence

of an applied electric field.

Results have been obtained with a Monte Carlo procedure

for covalent (silicon) and polar (gallium arsenide)

materials.

Furthermore, Monte Carlo calculations of hot-electron

phenomena usually do not take into account interaction among

carriers. On the other hand , a strong dependence of energy .

relaxation time on carrier concentration is observed at --

rather low carrier concentrations and it is thought to be due

to carrier-carrier interaction.

An analysis of the influence of e-e scattering on the . -

energy relaxation time is presented (Sect.4.3.I) through the

energy autocorrelation function obtained from a Monte Carlo

procedure which includes e-e interaction

(Sect.4. 3.2). Results will be shown for p-Ge and compared

with experimental data (Sect.4.3.3).

4.1 Autocorrelation of velocity fluctuations, noise, and

diffusion in steady-state conditions

4.1.1 Analysis of velocity fluctuations

, % %".1
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Let us consider a homogeneous ensemble of carriers

subject to a uniform static electric field E in steady-state

conditions. Diffusion and noise are related to the ,......,. .'.'i

stochastic velocity fluctuations (t) of each particle over

the drift vaiue vj . The mathematical quantity which

describes the common origin of diffusion and noise is the

autocorrelation function of velocity fluctuations, which, in

one dimension, is defined as

where the brackets indicate ensemble average, and the mean

value, in steady- state conditions, is independent of t'.

This quantity carries the information on how large these

fluctuations are and how they decay in time.

C(t) is related to the diffusion coefficient D through

the equation/4.16/:

D~ (E cl) 0(,-2) ""

0

Thus D can be determined by Eq.(4.2) from the evaluation of

C(t). It is worth noting that the calculation of C(t) is of

interest in itself, because its analysis, as we shall see,

yields a lot of physical information on the time evolution

of the dynamic system under investigation. '

A '.•"°- °
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Another important relation exists between the diffusion -,,

coefficient and the noise spectrum of velocity fluctuations, .

defined as T 2"

-• ly<) edE ( )

Using the Wiener-Kintchine theorem/.l1/the well known relation

is found. In order to describe the different origins

of the various terms which can contribute to the diffusion

process of carriers in semiconductors we shall consider a

many-valley semiconductor with two types of valleys (this is

the case, for example, of n-Si with the external field along

a <100> direction).

Let us consider an electron that, at time t, is in a

valley of type V(t) (V(t)=l or 2) with energy

between C and -tAC . We may then define: F

v =drift velocity,i.e. mean velocity of all

electrons;

v (t) =valley drift velocity,i.e. mean velocity of__
V V.

all electrons in valley V(t);

(t)=mean velocity of electrons in valley V with

energy between E and ACE .

".,,.-. .

V1 .. :-
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The instantaneous velocity of each electron v(t) can then

be written as the drift velocity plus a number of

fluctuating terms/4.12/:

,-* -AE'.-VIO [ A)-,j + "_y,(- LY- 

where v is the fluctuation associated with the drift

velocity of the valley in which the electron is at time

t, v_ is the fluctuation associated with the electron

energy, and )vk is the fluctuation associated with the-"

electron momentum.

By using the expression in Eq.(4.1) the steady-state

autocorrelation function becomes:

,j - ~.-'....
I •

where

4,. -% .:
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and i,j=v, ~ k. It has sometimes been implicitly assumedou

85-' ."-. .

in the literature that the total noise due to velocity

fluctuations is given by the sum of the three "diagonal"

contributions C.' in Eq.(4.6), at the origin of intervalley 7 .

(C,,)/4.18,4.19/convective (C~e)/4.20/, and thermal

(Ckj)/4. 20/ noise, respectively. This restrictive

assumption is correct only when the relaxation times of the

various fluctuating terms have well differentiated values

,so that in calculating the "off-diagonal " terms one of

the two fluctuations can be assumed as constant , while the

other one averages to zero. In general,

however,off-diagonal terms C.. also contribute to theV

autocorrelation function and therefore to diffusion and

noise. As an example, Cke (t) is the contribution to the

autocorrelation of velocity fluctuations associated with

correlations of momentum and energy fluctuations.

Due to the linearity of Eqs.(4.2) and (4.4) we can also

associate specific terms in the autocorrelation function

with corresponding terms in the diffusion constant and in

noise, thus making explicit their physical origins.

4.1.2 The Monte Carlo Procedure

We use for the theoretical calculations a standard Monte

Carlo procedure.

The evaluation of the autocorrelation function of v

.1.
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in steady-state conditions can be easily performed within

the Monte Carlo simulation as follows. Let T be the time

interval in which the autocorrelation function is to be .-

sampled, which is usually taken as larger than the

autocorrelation time (i.e. such that C(t) ' 0 for t -T)

Then T is divided into a number M of intervals of

duration aT=T/M in order to determine C(t) at the times -- "-

AT , QAT. AAT"T

During the simulation, the velocity of the sampled

particle is recorded at the time values i'LT, i=0,1,2,...

When i becomes greater than M, the products

/7( : ,' ATF 0 ,- : .) '""

are evaluated for each i and Products corresponding to

the same value of j are averaged over the simulation, thus

obtaining

+ 7A ) ) ---

(bar indicates time average) , since in steady-state

conditions the time average is equivalent to the ensemble

average.

IF



,° . q.\.

87

The noise spectrum can be easily obtained as a Fourier

transform of C(t)/4.2/.

In order to determine the diffusion coefficient by

means of a Monte Carlo simulation, the second central moment

..- .".% .)

can be evaluated as a function of the simulation time t,

where the average is performed over many different

particles. For times larger than the initial transient, the

time dependence of M(t) becomes linear and yields the

diffusion coefficient as

D can also be obtained from a numerical evaluation of the

integral in Eq.(4.2) once C(t) has been obtained.

The physical models used in the calculations for Si and

GaAs are those reported by Brunetti et al./4.21/ and

Ruch/4.22/, respectively.

4.1.3 Results

Results have been obtained both for covalent (silicon

case) and polar (GaAs case) materials. In order to simplify

the complexity of the interpretation of these results let us NOT,

" . , . .
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analyse the two cases separately.

.J Results for electrons in Si-have been obtained with an .. ..>.

applied electric field E=10kV/cm and a crystal temperature --

of 77 K. The simplest physical situation to discuss is

that with the valleys symmetrically oriented with respect to

the direction of the external field (E//I11I>).

Figs.4.1 and 4.2 report the autocorrelation function of

velocity fluctuations and the different contributions,

respectively, as analyzed in Sect.4.1.I, for the case E//

4111> . Within this analysis it is seen that a negative part

in the total autocorrelation function is present, which is

mostly due to the thermal contribution. Furthermore the

off-diagonal term CC_ (t) of the autocorrelation function,

as defined in Eq.(4.6), also gives an appreciable

contribution to the negative part, largely compensated by a

positive contribution of Ck 6 . The particular form of these

contributions is related to the energy dependence of the

scattering mechanisms. In fact if , at a given time t, a

positive fluctuation of electron momentum occurs, at a later

time, due to the larger absorbed power, a positive

fluctuation of energy is likely to occur; this,in turn,

leads to an increase in the scattering efficiency, so there

is a greater probability that a scattering will occur.

Since each scattering is momentum randomizing, at larger .7-

times negative fluctuations of momentum will follow.
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In order to connect this sequence of events to the

shapes of tile different terms C.. (t) , we need to relate
.-* %, ?

energy fluctuations k to velocity fluctuations Ove .

Fig.4.3 shows v as a function of energy in Si for the

same temperature and field considered above. It can be seen

here that vEV is an increasing function of e , so that a

positive @ will correspond to a positive dc

By collecting the above considerations, it can be

understood why CkC is positive,CEL is negative, and CL

is positive at smaller t and negative at larger t, with

a minimum which is reached at times greater than the extrema

of Ckc and C L (see Fig.4.2). In this case therefore

the fact that tile scatterirg probability is an increasing

function of energy yields a negative contr ibution to

longitudinal diffusivity through a negative part in C and

not through a negative convective contribution CCE , which

exibit a regular behaviour with a small negative part.

Other off-diagonal terms are, in this case, much smaller.

Figs.4.1 and 4.4 report the autocorrelation function of -

velocity fluctuations and its different contributions,

respectively, as analyzed in Sect.4.1.1 for E// '1100"" In

this case the different valleys have non- equivalent

orientations with respect to the field direction, and

therefore different components of the drift velocity along

the direction of E, so that the phenomenon of longitudinal

U.J
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intervalley diffusion occurs/4.21/. The intervalley

contribution to C(t) is responsible for the long tail of the .

total autocorrelation function, absent for the case E//161> *

(see Fig.4.1), since the intervalley transition time is the

largest of the characteristic times of the process under

investigation in these conditions of field and temperature.

If we evaluate the integral of the intervalley contribution

C ,we find for the intervalley diffusion coefficient the

value D =24cm /sec which is very close to the difference D
100

-D =21cm /sec /4.21/.Ill

The conclusion that such a difference is due to

intervalley fluctuations is confirmed by the observation

that the thermal and convective contributions to the total Fi

autocorrelation function are very similar for the two field

orientations (see Figs4.2 and4A).

In a transverse direction,for E//4100'> velocity

fluctuations are due only to thermal fluctuations (v.= =v

=0); their autocorrelation Is always positive, since no

energy transfer is associated with velocity fluctuations.

For this reason D is always larger than D , when the

scattering efficiency is an increasing function of .

Fig.4.5 shows the noise spectral density S(r (co) for

the case of E//60l discussed above. Again, the peculiar

shape of the total SF (A) can be understood from the , ,.
-IT5

analysis of the partial contributions, also shown in

' ."5. ".

• "5 - *- .-

S. S! S* !!:
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Fig .4.5. The white-noise value of the total spectrum,

corresponding to a diffusion coefficient of 41 cm/sec , is W*

strongly influenced by the large intervalley contribution (D.

91F=31 cm. /sec ) . This term shows the most rapid decrease at .. .

increasing frequencies due to the largest relaxation time of

the intervalley velocity fluctuations. The thermal term '-

gives ,a relatively small contribution(n =14 cm /sec) to the

white-noise level, as an effect of the cancellation of the -

negative and positive parts of Cj{, and has a bump, due to

the strong oscillation of Ck. The convective contribution,

with a white-noise level corresponding to D =10cm /sec, is

present with a monotonically decreasing behaviour, and is

always positive. The off-diagonal terms Ske and Sek have

similar shapes of opposite signs; their cumulative '"

contribution, which is relatively small, is negative at low

frequencies, corresponding to a negative contribution to

diffusivity, and becomes positive at high frequencies. . -

The total noise spectrum corresponding to the sum of the

different terms seen above shows a non-Lorentian behaviour

with a fast initial decrease due to the decrease of the

intervalley term followed by a bump due to the thermal

contribution and by the final A/W 2 ' dependence. Due

to the high frequencies involved, it may be difficult to

detect experimentally the maximum of S (O) at 800 GlIz. In

experiments however , it must be taken into account that an

[-- -i,-[ ;

-j.;4;-;
• * S' - - .

"-°'- "---.
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initial decrease of S (w) after a white-noise level does not
'- ,

indicate the cut-off of velocity fluctuations, but rather ...

yields information on the intervalley relaxation time.

Results consistent with the above interpretation have

been obtained with calculations performed at other

temperatures and fields. in particular, for T=77 K and -'

E=200 V/cm along a(100>and alll)directions, agreement has

been found with experimental data of Bareikis /4.23/,as

shown in Fig.4.6.

Results for electrons in GaAs have been obtained with

an applied electric field E=l(kV/cm and a crystal

temperature of 300 K.

Fig.4.7-a reports the autocorrelation function of

velocity fluctuations together with its three diagonal
.

terms. The thermal fluctuations at the chosen field

strength are much higher than for the case of Si, owing to

the higher electron energy.

Fig.4.7-b reports the off-diagonal terms. They are all

of the same order of magnitude, but much smaller than the

thermal contribution, so that in this part of the figure a

different vertical scale has been used. -

The interpretation of the diagonal terms, as well as of

the off-diagonal terms C and C , is similar to that given

for the case of Si. Fig.4.8 shows, in fact, that v. is a

MW

• . .: .-
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monotonous function of energy also for the case of GaAs. __-

This figure also shows two interesting features. By

increasing the field above threshold for negative

differential mobility, the whole ve curve (not only its

high-energy part) is reduced, due to the randomizing effect .

of intervalley scattering. The effect is related to the

intervalley collisions with the final k in the central

valley with direction opposite to the electric force/4 .24/ .

Furthermore, at energies above threshold for intervalley

scattering, the curve ve increases more sharply, because

electrons enter this region of energy mainly because of

acceleration due to the field.

In order to discuss the results for the other " :

off-diagonal terms, we shall refer to the succession of

electron states described in Ref.4.24. Electrons in the

upper valley will eventually be scattered in the negative

half k-space of the lower valley into a state with high

energy; as an effect of the field, their energy will first

decrease, and then increase until the electron will again be

scattered into the upper valley, in this way beginning a new

cycle. Therefore, when an electron is in the "slnw" upper

valley ( vV < 0), a positive fluctuation of energy will

most probably follow, corresponding to a positve , with a

negative k in the central valley. This is the main reason

for having C,/- negative and CV -  positive. When (and

'..' <r

4-II -il I
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consequently _v) is positive, a large energy will follow (SV >

0) and the electron will lie predominantly in the slow

valley ( )v ,<0) until its energy has been decreased by

successive intervalley scatterings; when, instead, St is

negative ( v <0), then the energy will be decreased by the

field action (Sv.<) and the electron will lie in the "fast"

valley (lv€>0) until it again reaches an energy comparable

with that necessary to emit an intervalley phonon. This

explains why Cry and Cc_./ are negative.

Fig.4.9 shows the spectral densities calculated from

the autocorrelation functions shown in Fig.4.7. Svc and

Sev are smaller than the other contributions and have not

been reported for the sake of clarity. .:.

As regards the noise spectrum, at high frequencies the

thermal contribution S is dominant, while for the white -...

V noise, owing to the large cancellation of the positive and *

negative part of Cu, S becomes comparable with other terms. .'-.

4.2 Transient Autocorrelation of Velocity Fluctuations and

Diffusion

4.2.1 Transient correlations

The diffusion process of a carrier ensemble comes from
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the particle space-velocity correlations which arise during

the evolution in time of the system.

Starting from an initial condition in which the particle

positions and velocities are totally uncorrelated, the

process which occurs during the time necessary for setting

up the correlations will be defined as the correlation

transient. Furthermore, when a high electric field is

applied at a certain time to the electron ensemble, the

transport process itself must pass through a transient

regime which is necessary for attaining the stationary

distribution f(k) in k-space. This process will be called

transport transient.

In what follows we shall discuss how these two

different transients can be analysed separately, but-.

simultaneously, and how their effects influence the

transient of the diffusivity of the electron ensemble.

The definition of the transient diffusion coefficient

has been given .by a generalization of Eq.(4.11) to arbitrary

small times /4.25-4.27/:

_D1 (14412)

h-.-...-,.ILI

where z(t) is the space position of a carrier at time t

4. -5
along the z-direction parallel to vd.

This generalization can be put in an equivalent form in
* • ..

4..:--.

• -,; . .

.. S.,.-.,-
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terms of the autocorrelation function, which is easily

Interpretable from a physical point of view. By using

P). Z (0) 4 AV3)
.jkA

• ~,., z

00

in Eq. (4.l2)we have : ! .£ [!:[;-

D(Le) : y_ + ::;L,}

+~ 0 lyM W '

0 0
>C WO ktl A));{" > :...

0

If there is no correlation between the initial positions and

velocities of the particles, Eq.(4.14) becomes:I:: 
'..::::""

01

with

v .,

where we have put in Eq.(4.15): e=t'-t. Eq.(4.15) reduces :A%.

to Eq.(4.2) in steady- state conditions (t; ). , "

By comparison of these two expressions, we see that in

the present case: (i) the integration interval does not

" . %'o

" . -"%"

1l
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extend to +00 but toward the past, back only as far as the

initial conditions; this finite integration brings about the ':

."-* *%.

effect of correlation transient;

(ii) the autocorrelation function to be integrated in the

transient analysis (Eq.4.16) is not time independent; it is

given by the specific ensemble average at a particular time,

and its shape provides information about the transport

transient.

4.2.2 The Monte Carlo Procedure

The transient autocorrelation function C (&_) ,also

called two-time autocorrelation function /4.15/ can be

calculated with a Monte Carlo procedure through the

simulation of the dynamics of an ensemble of electrons. At

fixed times 0,6t, 2At,..., the direct calculation of the

velocity fluctuations is performed with respect to the mean

value, calculated at the same time over the carrier

ensemble. The products v(iAt),v(jAt), j=0,l,...,i are then

averaged over the ensemble and they give i+l values of the FAT--_

transient autocorrelation function at the time t=iAt.

The analysis of the various contributions to the

autocorrelation function (see Eq.(4.6)), according to the

separation in Eq.(4.5), can also be obtained for the

transient case in a similar way.

The present analysis holds also if the field is

,*- , -N
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switched on at a time t larger than the time t=0 of the

initial conditions /4.28/. In this case the effect of the

transport transient is separated in time from the initial

correlation transient of the zero-field diffusion (see the

next section).

4.2.3 Results

As application of the general theory outlined in the

previous section, we now discuss the results obtained for

few special examples which contain the significant features

of most of the interesting cases. All the results have been

obtained with the Monte Carlo technique for electrons in Si

with the silicon model referenced to in the previous

section.

Fig.4.10 presents results for the second central

moment, the transient longitudinal diffusion coefficient,

obtained with Eq.(4.12), and the mean velocity, as functions

of time for electrons in Si with E =10 kV/cin. The

following initial conditions have been taken: electrons are

randomly situated in one of the six valleys with equal

probability; the velocities are chosen according to an

equilibrium Maxwellian distribution, and the electrons are

all positioned at r=0.

Fig.4.10 shows that the second central moment first

increases quadratically with time, as predicted by ballistic

.°- % ,o - - "
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behaviour. At intermediate times (0.2-1.psec) an irregular -C

behaviour is exibited by the diffusivity: a tendency to

level off, followed by an overshoot (t0-0.8 psec). Then, at

sufficiently long times, the second central moment shows the

linear dependence on time with the slope corresponding to -

the steady-state diffusion.

This behaviour is due essentially to the combined

action of the acceleration impressed by the external field

and of the dissipation of energy and momentum associated

with intervalley scattering. At the very beginning the

field accelerates the electron gas, and all the particles

move toward the region of energy where intervally emission

becomes possible. In this interval of time (0.-0.2 psec) we

have the ballistic regime, in which both mean velocity and

diffusivity increase linearly with time (see Figs.4.10-c and

b). The fastest electrons will then undergo intervalley

scattering, becoming in this way very slow ; as a

consequence mean'velocity and diffusivity tend to level off

(t'20.5 psec). Later, as an effect of the scattering, we -

have a separation between fast electrons (those which have

not yet undergone scattering) and slow electrons (which did

undergo scattering), which causes a fast increase in the r I

diffusivity (see Fig.4.10-b) and a decrease in the mean

velocity (see Fig.4.10-c) after its maximum value (t'!0.8

psec). Finally, due to the randomness of the scattering,

.-..V
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the randomized steady distribution of velocities will be set

up, and both 4v> and D reach the steady-state value; the

steady diffusivity is lower than the overshoot value because 0.

each particle becomes, in steady-state

conditions,alternatively slow and fast, with a reduction of

the spreading rate at long times,as indicated by the

negative part in the stationary autocorrelation function.

As previously noticed, the results on transient

diffusion can be analysed and understood in terms of the

transient autocorrelation function C (&) . The examples

presented below (Figs.4.ll and 4.12) refer to the silicon

case with E=10 kV/cm. However here the field has been

chosen along a <100 direction in order to add in the

discussion the effect of the intervalley contribution to the
. J

diffusivity. -

Fig.4.11 shows the transient autocorrelation function,

as a function of at various times t; the same initial

conditions used in Fig 10 have been taken. Each of these

curves is interrupted atE=t when the correlation with Lhe

initial conditions is reached. The area under each curve

gives the corresponding value at time t of the transient

diffusion coefficient. At very short times this area is -- '-

very small both because CL(t) starts from low values, and

because it is interrupted at short . The first effect is a

consequence of the transport transient , the electrons being

. -
°.- . .° .-
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still "cold", while the second effect is present because at P-..

small times the correlations are not yet established ---

- (correlation transient) . As t increases, the area reaches

larger values, and it is maximum when the positive part of CL

(C) is totally present, and a negative part is not yet

present. This leads to the overshoot of the transient

diffusivity. When negative correlations are established,

D(t) decreases toward the steady-state value, which is

attained when the shape of CL(Z) reproduces the steady-state '

function and the integral of the autocorrelation function is

extended to all significant valies of _-

It is particularly interesting to reproduce the same

analysis for the intervalley contribution alone. Fig.4.12 I- .

shows the transient autocorrelation function CL( ) for the %

intervalley velocity fluctuations 6 vV (t) , defined in

Sect.4.2.1, as a function of for various times t. The

most striking aspect of this set of curves is the presence

of a bump which is shifted toward a greater value of6, as t

increases. This phenomenon is clearly due to the velocity -

overshoot in the two types of valleys which increases the

value of v([) with respect to the steady state. As t

increases, this overshoot recedes more and more in the past,

so that it is seen at larger correlation times until it

vanishes, when any memory of the overshoot effect is lost.

The overshoot of the GaAs diffusivity /4.29/can be

=. • ~,., ".

V .i•.
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analysed in a similar way, and a negative part of the

transient autocorrelation function prevails over the

positive one at the times when D is found negative/4.29/.

This strong negative correlation is a consequence of the

electron transfer back and forth from central to upper

valleys, as discussed above.

As a final result, we report in Fig.4.13 an analysis of

the transient diffusivity in a case in which the electric

field is applied after the onset of the zero-field

correlations. Before application of the field, the

diffusivity slowly reaches the steady-state value in about

10 psec. When the electric field is applied, a transport

transient occurs, with heating of the carriers, on a shorter

time scale(in about 2 psec); during this time new

correlations are established and the diffusivity reaches the

new lower steady value, passing through a minimum with a

region of negative values. This negative region is in great

contrast with the overshoot of D seen for the case in

Fig.4.10. This can be explained by considering that the

first electrons which undergo intervalley scattering after

the field application are the fastest electrons in the

direction of the field; during the first part of the process

(zero-field correlation transient) the distributions of

carriers have fully developed the space-velocity

correlations at the basis of the diffusion process, so that

TV-
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a slowing down of the fastest particles due to intervalley

scattering produces a shrinking of the space distribution,

corresponding to the negative D. It may be useful to

compare the behaviour of D after the onset of the field in

Fig.4.13 with fig.4.10-b in order to appreciate the -

influence of the initial conditions in the transient

diffusion.

S.'. .

4.3 Autocorrelation of Energy Fluctuations and Energy

Relaxation in presence of carrier-carrier interaction

4.3.1 The influence of carrier-carrier interaction on the

energy relaxation

Monte Carlo calculations of hot-electron phenomena in ....

semiconductors seem to indicate that e-e interaction

introduce, in general, small corrections to the transport

quantities even at high carrier concentrations /4.30/.

On the other hand, a strong dependence of energy

-4-".' %"
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relaxation time on carrier concentration in warm electron

conditions is observed at rather low carrier concentrations

(10 -l 6 cm-3 in different semiconductors)

/4.31-4.33/.

The experimental data are obtained when the electron

concentration is changed in two different ways: namely, by

doping and compensating. In the latter case the electron

concentration decreases when that of the impurities

increases. Therefore the effect cannot be ascribed to

impurity scattering, and consequently it is thought to be -

due to the interaction among carriers. For a detailed

discussion of the experimental data see Refs.4.34,4.35.

It is well known that e-e scattering, which is energy

and momentum conserving, cannot have a direct influence on .

the physical mean quantities relative to the carrier

ensemble. However the presence of carrier interaction can

alter the probability of occurrence of other lattice

scatterings, especially those with a well defined threshold

of activation (e.g. emission of an optical or intervalley ___

phonon)/4.36,4.37/. ..- •,

A previous comparison between experimental and

theoretical results was performed in Ref.4.37 by means of a

-•-
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I i I II I ,i, i ""--t/-'5



% %

105 . ..

Monte Carlo simulation of a carrier ensemble interacting

through a Coulomb field. The theoretical effect was weaker

than the experimentally observed.

A different possible approach is to consider the

interaction through two-carrier collisions. When a screened

Coulomb potential has been used the collisions have been

found to contribute to carrier distribution and

correlation functions /439-4.40/ but a comparison with

experimental energy relaxations has not been made.

In order to determine the energy relaxation time

from Monte Carlo simulation, we have proceeded in two

different ways. '.

The dependence of the carrier mean energy (6(t)> on time

after the field has been switched on is recorded; under

warm-electron conditions, corresponding to weak deviations

from the thermal equilibrium, the above dependence can be

approximated as follows/4.35/:

"..'_ P .3Z
.. / % % °( .1

"C- (I
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where <A l(t)>= <E(t)>-_T is the extra energy at time t,

and Ao> is its value in stationary conditions. From a

best fit of the simulation data with Eq(4.17) a value for '-

can be obtained.

The above procedure is subject to the criticism that the

electron energy relaxation is itself a function of time in

the transient regime, during which the carrier distribution

is heated up, even though this effect should not be

important for the dependence of on carrier concentration.

The relaxation time can be well defined only in

stationary conditions, and it can be obtained by means of

the autocorrelation function of energy fluctuations from

where O is the energy fluctuation of the ensemble and - __"_

indicates time average, respectively. ...-

-'-.7777
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4.3.2 The Monte Carlo Procedure

Theoretical calculations for the energy relaxation time

through the above-mentioned approach and a comparison with

the experimental data have been performed for p-Ge. The - .S.

choice falls on these experiments for two reasons. Firstly

the uncontrolled impurity background was low in these

measurements, thus in the range of controlled concentrations

a'. ~43 I5,
of 10 -10 cm-3 the ionized impurity scattering can be

neglected /4.41/. Next, the models for band structure and

lattice scattering for this material allow a simple

appproximation which gives satisfactory results /4.30/.

The model of p-Ge used hereafter is a widely used one

/4.30/; only one heavy-mass subband is taken into account
- •-. ...--..-

which is considered spherical and parabolic with m=0.34m 0.0.

Optical phonons are considered dispersionless (A<W O =0.037

eV). The deformation potential consta nt D is taken to be

9x0**8 eV/cm. Nonelasticity of acoustic scattering is

included in the way used in Ref.4.42; sound velocity and .

acoustic deformation potential are chosen as 3.85 x 10**5

cm/sec and 3.25 eV, respectively. The crystal temperature

has been chosen as 100 K in order to allow the comparison . .
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with the experimental data. LW

The Ensemble Monte Carlo procedure used for the

v calculations has been modified to include e-e interaction in

the following way. Starting from an initial equilibrium

carrier distribution, a uniform and constant electric field -

is switched on, and carrier dynamics is simulated during a O .

time step short enough as compared to the energy and

momentum relaxation times, and even shorter than the time

between two successive interparticle collisions.

Carrier-carrier collisions are introduced through a

spherical screened Coulomb potential

(4.19)

where r is the distance, Eis the relative dielectric

constant, the inverse screening depth, which depends on

carrier density n. The Debye thermal-equilibrium value of

has been used, since warm-electron conditions have been .

considered. -

The scattering rate for two given carriers is as follows

-....-p.-?
IS.. -2
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/4.38/:

(4.20)

*.-. .. ° '. - -

3 5Lr
- - ' .- "''- '

where g = k -k is the wavevector difference of the colliding

particles, k and kc are the wavevectors of the test carrier

and the counterpart electron before their collision.

The total scattering rate for an electron with wavevector

k is given by

3: -(4.21).IN"

Since the distribution in k-space of the counterparts

f(ZC.) is not known a priori, the following rejection

technique has been used. A self scattering internal to the

2. 2
e-e interaction is introduced by substituting g/(g + r2'>) in

Eq.(4.21) with its maximum value 1/2 . In this way P' ?e Muir~.

(k) + p (k) results to be:

+. : J.q:
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~ir ~ ~ ,Th(4.22)

I~

This new e-e total scattering probability is introduced

among the other mechanisms. When an electron attempts an

intercarrier collision, a counterpart carrier is selected at

random from the particle distribution. If g is the

wavevector di-fference between t!.e Monte Carlo electron and

the counterpart, and a random number r results to be less

than 2( /(g**2+ P*2), the e-e collision is accepted. In .

this case the final states of both electrons involved into

the scattering process are selected according to the

differential cross section relative to the potential in

Eq.(4.19) and taking into account energy and momentum

conservations.

In doing so the state of the Monte Carlo electron is

changed at the time of the collision; the state of the

counterpart is changed at the time in which its simulation

was suspended. Through this procedure the distribution of

the counterpart carriers is not exactly syncronous with the

• , -"a, %
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simulation time of the Monte Carlo electron, but this '.

difference is not relevant if the time-step duration A t- "

is smaller than the time between two interparticle F
F.-... 1

collisions.

4.3.3 Results

Figs.4.14 and 4.15 show typical results obtained with the

Monte Carlo simulation following the two approaches

indicated in Sect.4.3.1.

Fig4.16 shows the dependence of C on the electric fieldUG
at a fixed concentration. At the highest field values

considered here the condition of warm-electron regime may

not be fulfilled, but these fields have been considered here

only to check the consistence of the physical picture.

It can be seen here that the effect of e-e interaction is

to reduce

This effect can be explained through the general

considerations reported in Sect.4.3.l. At low fields few

carriers have enough energy to emit optical phonons, due to

the low heating involved, while the majority of carriers

interact with acoustic phonons in a nearly elastic way.

f-r-..-

E _-..-.__ _ _-._ .
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Intercarrier collisions change the effectiveness of the

interaction with the lattice. In particular, an essential

contribution to the energy losses comes from two passive

carriers (that is having energy less than AWO ) if,

during their collision, one carrier gains enough energy for

a subsequent emisson of an optical phonon.

As a general confirmation of this picture, Fig.4.17 shows

the energy dissipation rate normalised to the value

without e-e interaction, for the optical phonon scattering

as a function of the electric field at a carrier

concentration of l.x 10 cm-3. It can be seen that at

low electric fields the rate of dissipation is substantially

enhanced with respect to the equilibrium case, due to the .0,e

increase of the "active" carriers, as effect of the e-e

scattering. At the highest fields, due to the heating, more

carriers are active also without e-e scattering, and the

quantities in Figs.4.16 and 4.17 become practically

insensitive to the interaction.

Finally in Fig.4.18 we report the normalised energy

relaxation time as a function of carrier concentration

compared with the experimental data of Ref.431.

The two theoretical techniques do not show relevant

°I, ,
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discrepancies in the normalised values. Even though the

theoretical results are affected by a certain statistical

error, there is no doubt that the effect theoretically

predicted is less than the one observed in the experiments,

as previously found.

E-e interaction, even trated as two-particle collisions P.

cannot account for the experimental enhancement of energy

relaxation, and more sophisticated mechanisms must be

invoked.

'. ' -;4'
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FIGURE CAPTIONS -

Fig.4.1: velocity autocorrelation function for electrons in

Si, as obtained from a Monte Carlo simulation, at 77 K for

E=lOkV/cm applied along a (100? (continuous line) and (111)

(dashed line) directions, respectively

Fig.4.2: a)autocorrelation function of thermal and

I ,convective fluctuations for electrons in Si at 77 K and E

=lkV/cm (see Sect.4.1.1); b) off-diagonal terms Ck and

Ck. which contribute significantly to the total velocity

autocorrelation function for the case shown in a). . -.

Fig.4.3: mean velocity (continuous line and left scale) and

distribution function (dashed line and right scale), as ._

functions of energy for electrons in Si at the indicated

temperature and field.

Fig.4.4: a) autocorrelation function of thermal,convective

and intervalley fluctuations for electrons in Si at 77 K and

E =l0kV/cm (see Sect.4.1.1); b) off-diagonal terms CCL and

C k_ which contribute to the total autocorrelation function

for the case shown a)

Fig.4.5: spectral density of velocity fluctuations and its

'.5'.°..
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components for electrons in Si at the indicated temperature

and field obtained as Fourier transforms of the - Z

autocorrelation function shown In Fig.4.I and 4.4. The

lettering of the curves is defined in the text.

Fig.4.6: spectral density of velocity fluctuations for

electrons in Si at 77 K and E=200 V/cm along a.100)and a (111>

directions. Points refer to experimental data of Bareikis

/4.23/ and lines refer to Monte Carlo calculations.

Fig .4.7: (a) autocorrelation function of velocity

fluctuations and its diagonal terms,and (b) off-diagonal

terms for the case of electrons in GaAs at the indicated

temperature and field. In (b) a different vertical scale

has been used.

Fig.4.8: mean velocity (continuous lines and left

scale) and distribution function (dashed lines and right

scale) as functions of energy for electrons in the central [

valley in GaAs at T=300K. The numbers on the curves

indicate the field strength in kV/cm.

' Fig.4.9: spectral density of velocity fluctuations and its

components for electrons in GaAs at the indicated

temperature and field obtained as Fourier transforms of the

°-a

,.- - °.. 
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autocorrelation functions shown in Fig.4.7. The lettering ;

on the curves is defined in the text.

Fig.4.10: second central moment (a), longitudinal diffusion

coefficient (b), and mean velocity (c) as functions of time

for electrons in Si at 77 K and E=10 kV/cm along a 4iii> .

direction.

Fig.4.11: transient velocity autocorrelation function vs.

correlation time ' at fixed times t (reported in psec over

each curve in the figure) for electrons in Si at 77 K and "-.

E=l~kV/cm along a(10)direction. Each curve is interrupted

ati=t when the correlation with the initial conditions is

reached. The stationary autocorrelation function

(continuous line) is shown for comparison.

Fig.4.12: transient intervalley autocorrelation function

vs. correlation time at fixed times t (reported in psec

over each curve in the figure) for electrons in Si at 77 K

and E=10 kV/cm along a 6100) direction. Each curve is

interrupted atC=t, when the correlation with the initial

conditions is reached. The stationary intervalley

autocorrelation function (t4og) is shown for comparison.

Fig.4.13: transient diffusivity as a function of time for

La... -

° . o -J.
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electrons in Si at 77 K, in a physical situation in which a

field Em =10 kV/cm is switched on at time tS =9.57 psec

after the initial conditions (t=) of uncorrelated

particles.

Fig.4.14:Carrier heating during the transient transport with .

field E=70 V/cm and T=100 K. The continuous curves have

been obtained by a best fit of the simulation data with

*. Eq.(4.17). Numbers indicate carrier concentrations in units .

of 10**15 cm-3. Points indicate simulation data for

n=5xl**15 cm-3.

Fig.4.15:Autocorrelation function of energy fluctuations in

steady-state conditions without (closed circles) and with

(open circles) e-e Interaction for a concentration

n=5xl**14 cm-3. T=100 K; E=70 V/cm.

Fig.4.16:Relative energy relaxation time as a function of

field strength at a carrier concentration n=1xl0**15

cm-3. Triangles and circles refer to data obtained by • -.

fitting the transient heating and with the energy

autocorrelation function in steady-state,

respectively. T=100 K.

Fig.4.17:Relative energy loss through optical phonons at a

V
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carrier concentration n=Ixl0**15 cm-3, as a function of

field strenght. T=100 K.

Fig.4.18:Relative energy relaxation time as a function of j
carrier concentration . Triangles and closed circles refer . *;

to data at a field strenght E=70 V/cm obtained by fitting -' =-

the transient heating and with the energy autocorrelation A_'.'

function, respectively. The cross indicates values obtained

at E=20 V/cm with the two techniques, indistinguishable in

this scale. Open circles refer to the experimental data In

Ref.4.31.
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5. CONCLUSIONS

The present report describes the research performed at

the Department of Physics of the University of Modena for

the ERO contract number DAJA45/83/C/0039 "Monte Carlo

analysis of quantum transport and fluctuation in

semiconductors".

As regards the analysis of velocity and energy

fluctuations of charge carriers in semiconductors, the new

results have been obtained and published (they are described

in Chapter 4). In particular, both transient and

steady-state regimes have been studied and the effect on

noise of the various sources of fluctuations have been

analised.

The effect of carrier-carrier interaction on energy

fluctuations and therefore onenergy relaxation time has also

been studied; the result is that a theoretical reduction of

the energy relaxation time is indeed observed in the Monte

Carlo simulation, but this reduction is not as strong as

that observed in experiments. ,'

As regard the extension of the Monte Carlo approach to

study quantum transport, the research has required a careful
,?. :
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analysis of the state of the art, which has been presented

in Chapter 2. A Monte Carlo method to solve L. %

integro-differential equations of the same type of transport

equations has been developed. The possibility to apply such

a method to the solution of the Liouville equation for ---.

quantum transport of electrons in a phonon field has been

investigated. The set up of the numerical procedure for this

case of practical importance is under development and

requires further work.
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